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In this paper, we compare protein- and ligand-based virtual screening techniques for identifying
the ligands of four biogenic amine-binding G-protein coupled receptors (GPCRs). For the
screening of the virtual compound libraries, we used (1) molecular docking into GPCR homology
models, (2) ligand-based pharmacophore and Feature Tree models, (3) three-dimensional (3D)-
similarity searches, and (4) statistical methods [partial least squares (PLS) and partial least
squares discriminant analysis (PLS-DA) models] based on two-dimensional (2D) molecular
descriptors. The comparison of the different methods in retrieving known antagonists from
virtual libraries shows that in our study the ligand-based pharmacophore-, Feature Tree-, and
2D quantitative structure-activity relationship (QSAR)-based screening techniques provide
enrichment factors that are higher than those provided by molecular docking into the GPCR
homology models. Nevertheless, the hit rates achieved when docking with GOLD and ranking
the ligands with GoldScore (up to 60% among the top-ranked 1% of the screened databases)
are still satisfying. These results suggest that docking into GPCR homology models can be a
useful approach for lead finding by virtual screening when either little or no information about
the active ligands is available.

Introduction
In recent years, virtual screening has emerged as a

complementary and alternative approach to high-
throughput screening of large compound libraries.1,2

Usually, a virtual screening cascade is subdivided into
different components that distinguish the level of com-
plexity delivered as input. In the first step, target-
unspecific filters are applied to eliminate chemical
structures possessing non-druglike properties.3 Subse-
quently, topological searches4 from known ligands are
often applied in virtual screening when seeking com-
pounds with different structural characteristics.5-8 Be-
cause these methods do not require the calculation of
three-dimensional (3D) conformers, they are suited for
the rapid screening of huge databases. Given a bioactive
(rigid) conformer of one or more ligands derived from
structure determination methods or from molecular
modeling, 3D-similarity9 or 3D-pharmacophore searches10

represent a further option for the virtual screening of
compound libraries. Finally, when the 3D structure of
the target protein is known or can be derived by
homology modeling, the ligands that have passed previ-
ous filter steps can be subjected to molecular docking
and scoring11-13 to provide potential candidates for
experimental testing. There have been many recent
publications describing the identification of novel ligands
by receptor-based screening methods.14 The 3D target
structures were derived by X-ray crystallography15-19

or homology modeling.20,21

G-protein coupled receptors (GPCRs) represent one
of the most important families of pharmaceutical tar-

gets.22 In particular, the subfamily of biogenic amine-
binding GPCRs has provided excellent targets (given in
brackets) for the treatment of several central nervous
system (CNS) diseases, such as schizophrenia (mixed
D2/D1/5-HT2), psychosis (mixed D2/5-HT2A), depres-
sion (5-HT1), or migraine (5-HT1). This GPCR subfamily
has also provided drugable targets for other disease
areas such as allergies (H1), asthma (beta2), ulcers (H2),
or hypertension (alpha1 antagonist, beta1 antagonist).
Because of the lack of crystal structures, computer-aided
drug design for GPCRs has traditionally had to rely on
either ligand-based modeling techniques23,24 or protein
models, which are either generated de novo25-27 on the
basis of the low-density map of bovine rhodopsin25-27

or generated by homology modeling based on the high-
resolution crystal structure of bovine rhodopsin (e.g.,
refs 28-36). Because the sequence agreement between
bovine rhodopsin and those GPCRs that are relevant
for drug design is low and de novo modeling is consid-
ered not to be accurate enough,37 there is an ongoing
debate about whether these techniques provide GPCR
models with an accuracy sufficient for drug design.
Recent publications report successful applications of
GPCR models in virtual screening (including molecular
docking and scoring),28,38-40 indicating the general
relevance of GPCR models and their usefulness for
structure-based drug design. For example, Varady et al.
performed a virtual screening for the D3 receptor using
a homology model of this receptor. Out of 20 experi-
mentally tested compounds, eight showed Ki values
better than 1 µM.40

In another attempt to explore the suitability of GPCR
homology models for the purpose of virtual screening,
we recently generated a homology model for the alpha1A
receptor.39 Applying two-dimensional (2D) queries and
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a 3D-pharmacophore model as a prefilter, we docked
.∼23 000 ligands into the alpha1A receptor homology
model. Out of the 80 compounds that were selected for
experimental testing, 37 showed a Ki value better than
10 µM, and 24 of these compounds were even binding
in the submicromolar range. The hit rates achieved with
these models were similar to those typically reached
when the target protein is given by a crystal structure,
suggesting that docking into rhodopsin-based GPCR
models is indeed a feasible approach for the identifica-
tion of novel ligands.

The general advantages of molecular docking are
clear: assuming that near-native protein-ligand con-
figurations are produced by the docking program, visual
analysis of protein-ligand interactions allows for an
intuitive interpretation and understanding of the bind-
ing process at the protein binding site. Furthermore,
molecular docking might be able to identify novel
ligands with a different binding mode, for example, by
addressing novel interaction sites that have not yet been
used by known ligands. It was indeed demonstrated that
docking programs and scoring functions are well-suited
for generating near-native ligand-binding poses in
protein binding sites.41 However, the currently available
scoring functions are still not considered applicable for
accurate affinity prediction, even if the molecular
protein-ligand interactions are available from crystal
structures.42,43

The sequential (filter) steps in a hierarchical screen-
ing approach are characterized by an increasing com-
plexity with respect to their computational require-
ments. The increased effort of the more “expensive”
methods can only be justified if these approaches
provide higher enrichments and/or novel scaffolds of
active compounds identified among the top-scored
ligands. More and more recent publications report
successful ligand identification by molecular docking
into the X-ray structures or the homology models of
target proteins.14 Sometimes, “high-throughput molec-
ular docking” of entire virtual libraries is performed.
However, the question of whether this method is more
efficient than purely ligand-based approaches remains
unanswered.

In this study, we compare different virtual screening
strategies for identifying biogenic amine-binding GPCR
antagonists from virtual libraries consisting of the
antagonists of these target receptors (the alpha1A,
5HT2A, D2, and M1 receptors) and additional druglike
molecules. For the screening of the virtual compound
libraries, we use (1) molecular docking (using GOLD44-46

and FlexX-Pharm,47,48) into GPCR homology models, (2)
ligand-based pharmacophore models generated with
Catalyst (Accelrys Inc.: San Diego, CA, 2002), or
Feature Trees,6,49 (3) 3D-similarity searches using
FlexS,9 and (4) statistical methods based on 2D molec-
ular descriptors (CATS,50,51 MACCS,52 QikProp53,54). The
comparison of the different methods in retrieving known
antagonists from the virtual libraries shows that the
ligand-based screening techniques outperform the mo-
lecular docking approach when sufficient ligand infor-
mation is used for the generation of models. In addition
to the quantitative aspect of enrichment factors and hit
rates, we will discuss representative examples to dem-
onstrate the extent to which the generated models can

serve to understand the determinants of molecular
recognition and to provide guidance for compound
optimization. These results show that the docking
approach is most helpful for understanding how ligands
of different chemotypes potentially bind to the receptors.

Methods

Screening Set: Training Sets for the Generation
of 3D-Pharmacophore, Feature Tree, and 2D-
Partial Least Squares (PLS) Models. For comparing
the performances of the different virtual screening
protocols, we compiled diverse screening data sets of 950
“inactive” compounds and 50 “active” compounds for
each target, which were extracted from the MDL Data
Drug Report (MDDR). The 3D-pharmacophore, Feature
Tree, and 2D-PLS models were based on ligands ex-
tracted from the literature via Aureus. Details are
described in the experimental section.

Model Generation and Retrospective Virtual
Screening. Homology Models: Docking and Scor-
ing. Protein models for the four target receptors were
generated by applying ligand-supported homology mod-
eling. The resulting models are shown in Figure 1. The
ligands of the screening data sets were docked into the
protein models using GOLD and FlexX-Pharm. In both
cases, knowledge about ligand binding was included in
the docking procedure in terms of interaction con-
straints. All docking poses were scored and ranked using
different scoring functions (see Experimental Section).

Feature Tree and 3D-Pharmacophore Models. A
multiple Feature Tree (MTree) model is conceptually
similar to a 2D pharmacophore. It does not require the
calculation of 3D coordinates and was shown to be very

Figure 1. Homology models of four biogenic amine receptors
complexed with ligands that were used for the construction
and optimization of the protein models. (a) Homology model
of the alpha1A receptor complexed with compound 1 from ref
70. (b) Homology model of the 5HT2A receptor complexed with
MDL-100907.86 (c) Homology model of the D2 receptor com-
plexed with iloperidone.87 (d) Homology model of the M1
receptor complexed with compound 12a from ref 88.
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fast and efficient for the virtual screening of large
databases. Catalyst was used for the generation of 3D-
pharmacophore models and for the subsequent virtual
screening of the screening data sets. To allow for a direct
comparison of the performance of both methods for
virtual screening, the same sets of ligands were used
for the generation of MTree and 3D-pharmacophore
models. For each target, two models were generated
(“class1” and “class2”) on the basis of the ligands
depicted in Figures 2-5.

Details of the model generation and the virtual
screening are given in the experimental section and

depicted in Figure 6 (Feature Tree model). Figure 7
shows the 3D-pharmacophore models for the alpha1A
receptor.

3D-Similarity Searching. 3D-similarity searches
were performed for the four biogenic amine-binding
GPCRs using the program FlexS for flexible superposi-
tion and similarity ranking of the screening sets. A
critical issue when performing a 3D-similarity search
is determining which compound to choose as a reference
forthesimilaritysearch.Wechosecompound1 (alpha1A),
compound 12a (M1), MDL-100907 (5HT2A), and ilo-
peridone (D2) (see Figure 1) for this purpose, that is,

Figure 2. Alpha1A receptor antagonists used for the generation of the Catalyst pharmacophore and Feature Tree models.
Structural analysis of the selected compounds revealed that they can be grouped into two classes. Class1 is represented by
compounds 1-9, prazosin, NAN190, RS17053, doxazosin, and cyclozosin. Class2 is represented by YM617, WB4104, ARC239,
BE2254, spiperone, and compound 10. The principal (representative) molecule for class1 is prazosin, and that for class2 is compound
10.
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for each target, only one compound was selected as the
reference ligand.

2D-QSAR Models. A quantitative structure-activity
relationship (QSAR) model relates the numerical prop-
erties of the molecular structure to its activity by a
mathematical model. A wide range of 2D- and 3D-
molecular descriptors has been used to describe the
physicochemical and molecular properties of molecules
(e.g., refs 51, 55-62). For the correlation of these
descriptors with a biological activity, different tech-
niques are available and have been extensively used for
the development of QSAR models (e.g., refs 63-67). In
the present study, we used 150 topological CATS
descriptors,51 163 MACCS keys,52 and 37 QikProp
descriptors,53,54 for the physicochemical and molecular
representation of chemical compounds. These were cor-

related with the affinities (pKi values) of known ligands
using PLS projection onto latent structures. Further-
more, we used sets of known active and inactive com-
pounds for the generation of partial least squares dis-
criminant analysis (PLS-DA) models. A detailed de-
scription of model generation is provided in the experi-
mental section. Both models (PLS and PLS-DA) were
used to rank the compounds of the screening data sets.

Results

In this section, the performance of the different
methods in retrieving known antagonists of biogenic
amine receptors from the respective screening sets will
be evaluated. Furthermore, we will provide representa-
tive examples to demonstrate the extent to which these
models can serve to understand the determinants of

Figure 3. 5HT2A receptor antagonists used for the generation of the Catalyst pharmacophore and Feature Tree models. Structural
analysis of the selected compounds revealed that they can be grouped into two classes. Class1 is represented by ketanserin,
S18327, spiperone, MDL-100907, and compounds 11 and 12. Class2 is represented by mianserin, ritanserin, and cyproheptadine.
The principal (representative) molecule for class1 is spiperone, and that for class2 is mianserin.

Figure 4. D2 receptor antagonists used for the generation of the Catalyst pharmacophore and Feature Tree models. Structural
analysis of the selected compounds revealed that they can be grouped into two classes. Class1 is represented by spiperone,
haloperidol, risperidone, and domperidone. Class2 is represented by clozapine, chloropromazine, flupentixol, RMI-60947, loxapine,
and eticlopride. The principal (representative) molecule for class1 is spiperone, and that for class2 is clozapine.
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molecular recognition at the investigated receptors and
to provide guidance for compound optimization.

Homology Models: Docking and Scoring. Figure
1 depicts receptor-ligand complexes for the presented
target GPCRs generated by ligand-supported homology
modeling and validated by mutagenesis data.68 In
Figure 1a, proposed interactions for the alpha1A recep-
tor, as derived from mutagenesis data and comparative
affinity determinations based on ligand binding,69,70 are
displayed as dashed lines. Analysis of this complex
(Figure 1a) shows explicitly that Asp3.32 constitutes a
central anchoring point for the ligands and divides the
binding site into two different subpockets. The first
subpocket, which is defined by helices 4, 5, 6, and 7,
consists of amino acids offering hydrophobic side chains
(Val5.39, Phe6.51, Phe6.52, Met6.55, Phe7.35, and
Phe7.39). Similarly, the second subpocket is formed by
mainly aromatic residues contributed by helices 1, 2, 3,
and 7 (Phe2.60, Phe2.64, Trp3.28, Phe7.35, and Phe7.39).
As an advantage, the docking procedure provides the
user with easily interpreted binding modes of protein-
ligand complexes. It helps one to understand features
essential for molecular recognition based on the detailed
analysis of interactions between the amino acids of the
protein model and the docked ligands.

FlexX Docking. Enrichment curves resulting from
the scoring of the docking poses generated by FlexX-
Pharm are provided in Figure 8. A visual analysis of
these curves reveals that the enrichments are lower
than those obtained when screening with Feature Tree

or Catalyst models. An additional shortcoming is that
there is no scoring function that provides acceptable
enrichments for all four target receptors when consider-
ing the top-ranked compounds of the hit lists. G_SCORE
provides the best enrichment for the 5HT2A receptor
(enrichment factors of 0.0, 2.8, and 3.2 at the top-scored
1, 5, or 10% of the ranked database, respectively),
XScore provides the best enrichments for the alpha1A
(enrichment factors of 5.5, 3.5, and 2.6) and the M1
receptors (9.1, 4.3, 3.2), and PMF provides the best
enrichments for the D2 receptor (0.0, 1.2, 1.4).

GOLD Docking. Figure 9 shows the enrichment
curves resulting from scoring the docking poses gener-
ated by GOLD. Inspecting the first 10% of the ranked
hit lists reveals better enrichments compared to those
provided by FlexX-Pharm. Remarkably, in all cases, the
best enrichments are obtained when GoldScore is used
as scoring function. This observation simplifies a virtual
screening protocol with GOLD. A rescoring of the
generated ligand poses is not necessary because the
GoldScore is returned as a final fitness value of GOLD’s
genetic search algorithm, which docks a ligand into the
protein binding site. For the alpha1A receptor, enrich-
ment factors of 12.0, 7.2, and 5.6 (at 1, 5, and 10% of
the top-ranked data set, respectively) are observed (see
also Table 1).

For the other receptors, the corresponding numbers
are 12.0, 8.4, and 6.2 for the 5HT2A receptor, 4.0, 4.4,
and 4.4 for the D2 receptor, and 12.0, 6.8, and 4.6 for
the M1 receptor. These statistics are satisfactory. At this

Figure 5. M1 receptor antagonists used for the generation of the Catalyst pharmacophore and Feature Tree models. Structural
analysis of the selected compounds revealed that they can be grouped into two classes. Class1 is represented by phenglutarimide,
trihexyphendiyl, fluorohexahydrodifendol, hexahydrodifendol, procyclidine, and artane. Class2 is represented by 4-DAMP, atropin,
aprophen, and pirenzepin. The principal (representative) molecule for class1 is artane, and that for class2 is 4-DAMP.
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point it must be clearly noted that the docking poses of
the ligands in the protein binding sites allow for an
intuitive understanding of ligand binding, but the
enrichments obtained by docking are lower than those
resulting from the Feature Tree, Catalyst pharmaco-
phore, and PLS-DA models (see the following sections).

As mentioned above, knowledge about ligand binding
was included as an additional interaction constraint in
the docking process. Indeed, a preliminary evaluation
study with GOLD as the docking engine for the alpha1A
receptor reveals lower enrichments compared to those
including ligand information. If any information about
ligand binding is ignored, then the enrichment factors

for the alpha1A receptor are 7.3, 5.5, and 4.4 (at 1, 5,
and 10% of the top-ranked data set, respectively).

3D-Pharmacophore and Feature Tree Models.
Feature Tree Models. The enrichment curves for all
MTree models are given in Figure 10, and the enrich-
ment factors obtained at 1, 5, and 10% of the sampled
databases are provided in Table 2.

In addition to the curves obtained from the individual
MTree models, a consensus curve was derived for each
target. This was accomplished by assigning each com-
pound a winner score, that is, a higher similarity value
assigned from the two individual (class1 and class2)
queries. Analyzing the combined hit list (based on the
winner score) for the 5HT2A receptor reveals an enrich-
ment factor of 8.0 for active compounds (at 10% of the
ranked database) compared to a random selection. In
contrast, the enrichment factors obtained from the indi-
vidual 5HT2A models only amount to 6.8 (model 5HT-
2A_class1) and 4.2 (model 5HT2A_class2). Similarly, the
combination of the class1 and class2 models also results
in higher enrichments for the alpha1A, M1, and the D2
receptors when the top 10% of ranked compounds is
considered. When the portion of active compounds
identified among the top-ranked 10% of the screened
candidate database (“yield”) is considered, 80% (40 out
of 50 compounds) of all 5HT2A antagonists are identi-
fied for the 5HT2A receptor. The corresponding yields
of the individual 5HT2A models only amount to 68%
(model 5HT2A_class1) and 42% (model 5HT2A_class2)
of the active compounds among the top-ranked 10% hits.
The performance of the combined hit lists of the MTree
models is especially remarkable when only 10 of the top-
ranked hits (corresponding to the top 1%) of the

Figure 6. Generation of Feature Trees and mapping a ligand
with a Feature Tree model. (a) The alpha1A Feature Tree
model (class2) derived from six antagonists of the alpha1A
receptor. The color code of individual hexagons in the model
indicates the chemical similarity of aligned functional groups.
Red hexagons indicate identical groups, orange and yellow
hexagons indicate similar groups, and green hexagons indicate
that there is no significant correspondence. (b) Alpha1A
antagonist (compound 10) with fragments colored according
to their assigned physicochemical properties. Aliphatic frag-
ments are gray, hydrogen-bond donors are blue, hydrogen-bond
acceptors are red, and aromatic rings are green. (c) Feature
Tree representation of compound 10 with molecular fragments
converted into single nodes. Rings are merged into one node.
Neighboring fragments (sharing atoms or bonds) are connected
by edges. The Feature Tree and the molecule are shown in
the same orientation. (d) Mapping of compound 10 onto the
Feature Tree model (class2).

Figure 7. Catalyst pharmacophore models generated with
Catalyst for the alpha1A receptor. Shown are the two phar-
macophore models [class1 (a) and class2 (b)] mapping two
different classes of high-affinity ligands (see Figure 2) of the
alpha1A receptor.
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screened database are considered. In the case of the
5HT2A, D2, and M1 receptors, all these compounds are
antagonists of the respective receptors. Indeed, when
only the top-ranked 1% of the screened databases is
considered, the Feature Tree models outperform the
other screening methods evaluated in this paper.

Figure 6a shows the Feature Tree model A1AA_class2,
which is derived from six alpha1A antagonists (see
Figure 2). The chemical similarities of aligned groups
in the MTree model are indicated by the color codes of
the hexagons, with the red hexagons representing
identical groups, and the orange hexagons indicating
highly similar nodes. As an example, the Feature Tree
representation of compound 10 (Figure 6b) is given in
Figure 6c. The alignment of this compound with model
A1AA_class2 is provided in Figure 6d. The resulting 2D
pharmacophore allows for an easy interpretation and
is in good agreement with our knowledge about molec-
ular recognition at the alpha1A receptor. As we already
know from the analysis of the mutational data and the
inspection of the alpha1A homology model, a central
positively ionizable group (represented in Figure 6a by
the orange hexagon) forms a charge-mediated hydrogen
bond with Asp3.32, which is the key interaction for all
biogenic amine-binding GPCRs.68 Furthermore, in the
alpha1A receptor, two hydrophobic subpockets are
represented by the red-colored hydrophobic/aromatic

groups. These groups are connected to the central
positively ionizable group by linkers of variable length.

3D-Pharmacophore Models. Figure 11 shows the
enrichment curves obtained for both (class1 and class2)
models of each target, and the enrichment factors at 1,
5, and 10% of the screened database are given in Table
2. Furthermore, the respective data for the combined
hit lists (based on the winner scores) are provided.

Overall, the achieved enrichment and hit rates are
slightly lower than those obtained by the Feature Tree
models; however, the differences are not significant. In
contrast to the Feature Tree models, a combination of
the hit lists obtained from the individual (class1 and
class2) models does not result in significantly better
enrichments compared to the individual searches. In-
terestingly, the enrichment curves for the alpha1A
receptor are steep in the beginning, going almost
parallel to the ideal curve (black line). The flattening
of the curves toward the right can be explained by the
fact that some alpha1A antagonists cannot be mapped
to the pharmacophore. In particular, the pharmacophore
model A1AA_class1 based on the 14 class1 ligands
(Figure 2) seems to be too restrictive to select all
compounds in the test set.

In contrast to the Feature Tree models, the 3D-
pharmacophore models require the calculation of the
3D-coordinates for each compound, resulting in an

Figure 8. Enrichment curves obtained by docking into the alpha1A, 5HT2A, D2, and M1 receptor homology models with FlexX
and scoring with eight different scoring functions.
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increased computational effort for model generation and
database screening. Therefore, these models also allow
for an intuitive interpretation of the 3D spatial arrange-
ment of the features essential for binding at the target
receptor. The alpha1A pharmacophore models are de-
picted in figures 7a (A1AA_class1) and 7b (A1AA_class2).
Model A1AA_class2 contains a central positively ioniz-
able pharmacophoric element, which probably interacts
with Asp3.32. Comparative analysis of this pharma-
cophore model and the generated alpha1A homology
model indicates that the two hydrophobic subpockets
of the antagonist binding site are identified by the
hydrophobic and aromatic pharmacophoric features.
Some alpha1A antagonists contain an additional hy-

drogen-bond acceptor, which is reflected by pharma-
cophore model A1AA_class1.

The 3D-pharmacophore models of the alpha1A, 5HT2A,
and D2 receptors have already been successfully used
in another study to discriminate between the binders
and the nonbinders of these receptors.71 In-house ap-
plications of the alpha1A 3D-pharmacophore models
further revealed that these in silico tools can be used
to guide the chemical optimization toward clinical
candidates with fewer alpha1A-mediated side-effects
(e.g., orthostatic hypotension, dizziness, and fainting
spells).

3D-Similarity Searching. Table 3 provides the
enrichment factors at 1, 5, and 10% of the screened
database obtained from 3D-similarity searching with
FlexS, and the enrichment curves are given in Figure
12.

Analyzing the enrichment factors (alpha1A: 1.8 at
1%, 0.8 at 5%, and 1.4 at 10% of the ranked database;
5HT2A: 3.6 at 1%, 2.4 at 5%, and 2.4 at 10% of the
ranked database; D2: 1.8 at 1%, 2.0 at 5%, and 2.8 at
10% of the ranked database; M1: 1.8 at 1%, 0.4 at 5%,
and 0.4 at 10% of the ranked database) shows results
that are inferior to the results obtained from the other
virtual screening techniques. The performance of these
3D-similarity searches could probably be improved by
designating certain features as being essential (for

Figure 9. Enrichment curves obtained by docking into the alpha1A, 5HT2A, D2, and M1 receptor homology models with GOLD
and scoring with eight different scoring functions.

Table 1. Enrichment Factors (EF) and Hit Rates of Active
Compounds Obtained by Docking into the Corresponding
Protein Models with GOLD and Scoring with GoldScorea

alpha1A 5HT2A D2 M1

% database
screened EF

hit
rate
[%] EF

hit
rate
[%] EF

hit
rate
[%] EF

hit
rate
[%]

1 12.0 60 12.0 60 4.0 20 12.0 60
5 7.2 36 8.4 42 4.4 22 6.8 34

10 5.6 28 6.2 31 4.4 22 4.6 23
a Enrichments and hit rates are given at 1, 5, and 10% of the

ranked virtual libraries.
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example, the matching of the positively ionizable nitro-
gen), which would conceptually be similar to a 3D
pharmacophore. For example, comparing these 3D-
similarity searches with the performance of the 3D-
pharmacophore models is probably unfair because each
pharmacophore model was generated on the basis of
several (diverse) ligands, whereas the 3D-similarity
searches were based only on one reference structure.
One possibility for a “fair” comparison would be to merge
several template ligands into one reference query. This
can be done (within FlexS) by translating the molecular
representations of several reference ligands into Gauss-
ian representations and subsequently merging these
Gaussians such that the molecular features that are
similar in their 3D arrangement are more important
than the features that are dissimilar. This procedure is
again conceptually similar to a 3D-pharmacophore
model.

2D-QSAR Models. Table 4 gives an overview of the
statistics of the generated 2D-QSAR models. The hit
rates and enrichment factors obtained from these
models are provided in Table 5, and Figure 13 shows
the corresponding enrichment curves.

PLS Models. For the alpha1A receptor, a six-
component PLS model (q2 ) 0.748, r2 ) 0.826) was

obtained for 517 compounds. A six-component model
was also derived for the M1 receptor (q2 ) 0.675, r2 )
0.771) for 509 compounds. For the 5HT2A and D2
receptors, five-component models were obtained with q2

) 0.656 and r2 ) 0.740 for the 5HT2A receptor (420
compounds) and q2 ) 0.543 and r2 ) 0.685 for the D2
receptor (544 compounds).

These models were subsequently employed to predict
the affinities of the corresponding screening sets (see
Figure 13 and Table 5). When one considers the PLS
models, only the enrichment rates for the M1 receptor
are acceptable. Here, the enrichment factors are 12.0,
5.6, and 4.0 at the top-scored 1, 5, or 10% of the ranked
database. However, for the other targets, the respective
enrichment factors are only 2.0, 1.2, and 1.2 for the
alpha1A receptor, 0.0, 0.0, and 0.0 for the 5HT2A
receptor, and 0.0, 0.0, and 0.2 for the D2 receptor.

The reasonable q2 and r2 values for all reported PLS
models indicate their internal consistency. These models
are able to accurately estimate the binding affinity for
compounds of the respective training set. Because the
training sets extracted from the Aureus database con-
tain all ligands with reported Ki values (determined in
a radioligand replacement assay) against the wildtype
of the target receptors, it is likely that the prediction

Figure 10. Enrichment curves obtained by Feature Tree models. For each receptor, three curves are shown. Class1 and class2
represent the enrichment curves obtained by screening with the corresponding (class1 or class2) models. Furthermore, a consensus
curve (winner) was derived for each target. This was accomplished by assigning each compound a winner score, that is, a higher
similarity value assigned from the two individual (class1 and class2) queries.
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accuracy is reasonable for the ligands of the active
screening sets. However, information about inactive
ligands is completely missing in the training data set.
It was recently shown by Sheridan et al.72 that the
prediction accuracy of QSAR models degrades as the
molecules to be predicted depart from the training set.
Indeed, the analysis of the predicted pKi values indicates
that the PLS model overestimates the affinities of the
compounds from the inactive set, which do not have
structurally similar compounds in the training sets of
the PLS models. This inaccurate prediction for inactive
compounds clearly indicates the inefficiency of the
generated models with respect to virtual screening.

PLS-DA Models. As mentioned above, a PLS-DA
model is generated for the prediction of the class
membership (e.g., active or inactive) of an external set
of objects. Statistics for the generated PLS-DA models
are provided in Table 4. Models with reasonable sig-
nificance were generated for each receptor, as indicated
by the obtained q2 and r2 values. In contrast to the PLS
models reported above, the performance of the PLS-DA
models is superior in differentiating between binders
and nonbinders for the respective GPCR screening sets
(see Figure 13). For example, the enrichment factors
obtained for the alpha1A receptor are 16.0, 11.2, and
7.6 at the top-scored 1, 5, or 10% of the ranked database
(see Table 5). When the screening efficiencies of the
different screening methods employed in this study are
compared, the PLS-DA models perform best when the
top-ranked 10% of the screened databases are consid-
ered. The PLS-DA models identify most of the active
compounds for the alpha1A receptor (38 of 50 active
compounds at 10% of the screened database), the
5HT2A receptor (40 of 50 active compounds), and the
D2 receptor (36 of 50 active compounds). For the M1
receptor, 21 of 50 active compounds are identified at

10% of the screened database. Although this yield is
lower than the hit rate achieved with the MTree models
(which identified 29 of 50 active compounds), it is still
acceptable.

This study suggests that the consideration of a
chemically diverse set of inactive compounds in the
training set to create classifiers instead of regression
models based only on known active compounds is
important for building virtual screening filters. Al-
though the compounds of the decoy set are certainly not
a complete representation of all inactive compounds at
the target receptors, the achieved enrichments justify
this pragmatic approach to extract a set of 1000
randomly chosen, inactive, structurally diverse com-
pounds. As mentioned above, increasing the number of
inactive compounds in the decoy set to 2000, 5000, or
10 000 compounds did not result in better enrichments
for the active compounds.

At this point it should be noted that it is not the
purpose of this paper to explore any optimal descriptor
set and regression method for the generation of QSAR
models suited for virtual screening. Comparable or even
better results may be achieved using different sets of
descriptors or QSAR methods. We chose the applied
descriptors and PLS as the regression method because
the loading plots resulting from a PLS analysis show
the inner relationship between these descriptors and the
biological activities, allowing for an unambiguous in-
terpretation of the molecular features that are crucial
for binding at the target receptor.

Figure 14 plots the product of the standard deviation
of the considered 2D descriptors times the coefficient
of the QSAR equation (COEFF × STDEV) of the
alpha1A PLS-DA model, indicating which descriptors
are positively or negatively correlated with alpha1A
activity. As indicated, the CATS descriptors DA_6 (i.e.,
the occurrence of a hydrogen-bond donor and a hydrogen-
bond acceptor atom pair, separated by six bonds) and
DL_6 (a hydrogen-bond donor and a lipophilic atom
separated by six bonds) are positively correlated with
activity at the alpha1A receptor. The mapping of this
atom pair onto an alpha1A antagonist is given in Figure
14. The hydrogen-bond donors of both the DA_6 and the
DL_6 descriptors are mapped onto the nitrogen, which
is supposed to establish a hydrogen bond with Asp3.32.
In addition, two MACCS keys, positively correlated with
activity at the alpha1A receptor, can be mapped on this
alpha1A antagonist (see Figure 14).

Discussion and Conclusion

In this contribution, we presented a comparative
evaluation of different virtual screening approaches for
identifying the known antagonists of four biogenic
amine-binding GPCRs from a virtual library consisting
of the antagonists of these receptors and additional
druglike molecules. We compared the performance of
different, well-established methods using molecular
docking, 2D- and 3D-pharmacophore searches, 3D-
similarity searches, and QSAR models based on topo-
logical 2D descriptors for the virtual screening of
compound libraries. However, at this point it should be
noted that the present study cannot provide an exhaus-
tive comparison of all currently available virtual screen-
ing methods. Different and eventually better results

Table 2. Enrichment Factors and Hit Rates from Screening
the Virtual Screening Library Using the Alpha1A, 5HT2A, D2,
and M1 Feature Tree and Catalyst Modelsa

alpha1A 5HT2A D2 M1

% database
screened EF

hit
rate
[%] EF

hit
rate
[%] EF

hit
rate
[%] EF

hit
rate
[%]

Feature Tree models
1 class1b 12.0 60 18.0 90 20.0 100 18.0 90

class2c 16.0 80 16.0 80 16.0 80 10.0 50
winnerd 12.0 60 20.0 100 20.0 100 20.0 100

5 class1 6.8 34 9.6 48 8.8 44 8.8 44
class2 9.2 46 6.0 30 5.2 26 4.4 22
winner 7.6 38 11.2 56 9.6 48 10.4 52

10 class1 4.8 24 6.8 34 5.0 25 5.0 25
class2 5.4 27 4.2 21 4.2 21 3.2 16
winner 5.8 29 8.0 40 6.2 31 5.8 29

Catalyst models
1 class1 14.0 70 10.0 50 6.0 30 18.0 90

class2 12.0 60 8.0 40 2.0 10 16.0 80
winner 14.0 70 10.0 50 0.0 0 16.0 80

5 class1 6.4 32 8.4 42 4.8 24 9.2 46
class2 10.0 50 8.4 42 4.0 20 7.6 38
winner 10.4 52 8.8 44 4.0 20 9.2 46

10 class1 3.6 18 4.4 22 2.8 14 5.6 28
class2 5.4 27 6.4 32 4.4 22 5.0 25
winner 5.8 29 7.4 37 4.6 23 5.6 28

a Enrichments and hit rates are given at 1, 5, and 10% of the
ranked virtual libraries. b,c For each receptor, two models were
generated due to the observation that the ligand training sets can
be grouped into two classes (class1 and class2) for each of the four
targets. d A consensus score was derived for each target. This was
accomplished by assigning each compound a winner score, that
is, a higher similarity value assigned from the two individual
(class1 and class2) queries.
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might have been obtained with other virtual screening
approaches. For example, successful applications in
virtual screening by molecular docking have been
described in the literature using FRED (OpenEye
Scientific Software), Glide (Schrödinger, Inc.), SLIDE,73,74

or DOCK.75 3D-pharmacophore searches can also be
accomplished using tools such as UNITY (Tripos Inc.,
St. Louis, MO) or MOE (Chemical Computing Group,
Montreal, Canada). Furthermore, as mentioned before,
a wide range of 2D- and 3D-molecular descriptors are
available for the development of models suited for
virtual screening. The performance of the virtual screen-
ing methods used in this study was evaluated by
assessing the hit rates and enrichments of known active

compounds within the top-scored compounds. In addi-
tion, graphical representations of the generated models
were provided to demonstrate how these results in-
crease the understanding of determinants for molecular
recognition at their target receptors.

When the results are considered only with respect to
hit rates and enrichment factors, the ligand-based
approaches performed better than the protein-based
approach (i.e., docking into the homology models). One
might argue that for the protein-based virtual screening
shown here, the protein structure is represented by a
homology model rather than a crystal structure, and the
lower resolution of the protein structure might be the
cause for inaccurate docking poses and affinity estima-
tions provided by the scoring functions. McGovern and
Shoichet compared the performance of molecular dock-
ing against holo, apo, and modeled conformations of
enzymes for 10 targets.76 In their study, the best overall
enrichment was produced by the holo (crystal) structure
in seven systems, the apo (crystal) structure in two
cases, and the modeled structure in one system. The
authors suggested that the performance of the docking
calculation is indeed affected by the particular repre-
sentation of the receptor used in the screen and that

Figure 11. Enrichment curves obtained by Catalyst models. For each receptor, three curves are shown. Class1 and class2 represent
the enrichment curves obtained by screening with the corresponding (class1 or class2) models. Furthermore, a consensus curve
(winner) was derived for each target. This was accomplished by assigning each compound a winner score, that is, a higher fit
value assigned from the two individual (class1 and class2) queries.

Table 3. Enrichment Factors and Hit Rates from Screening
the Virtual Screening Library Using FlexSa

alpha1A 5HT2A D2 M1

% database
screened EF

hit
rate
[%] EF

hit
rate
[%] EF

hit
rate
[%] EF

hit
rate
[%]

1 1.8 9 3.6 18 1.8 9 1.8 9
5 0.8 4 2.4 12 2.0 10 0.4 2

10 1.4 7 2.4 12 2.8 14 0.4 2
a Enrichments and hit rates are given at 1, 5, and 10% of the

ranked virtual libraries.
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the holo (crystal) structure is the one most likely to yield
the best discrimination between known ligands and
decoy molecules, but important exceptions also emerged
from their study. In an internal study (unpublished
data), we recently docked 50 diverse cyclooxygenase-2
(COX-2) inhibitors and a test set of 950 inactive
compounds (both extracted from the MDDR) into the
high-resolution crystal structure of COX-2 (pdb-code:
6cox) and obtained enrichments similar to those ob-
tained after docking into the GPCR homology models
(9.0, 4.8, and 3.6 at the top-scored 1, 5, or 10% of the
ranked database). This observation suggests that the

performance of a virtual screening based on molecular
docking depends not only on the quality of the underly-
ing protein structure but also on the employed docking
program and scoring function. Indeed, recent evaluation
studies performed by others have shown that the most
limiting factor in ligand docking is probably that the
currently available scoring functions are not yet gener-
ally applicable for accurate affinity prediction, even if
the molecular protein-ligand interactions are available
from crystal structures.42,43 Thus, it is difficult to
determine how much the performance of virtual screen-
ing by molecular docking is affected by the “low resolu-

Figure 12. Enrichment curves obtained from 3D-similarity searching using FlexS.

Table 4. QSAR Statistics for the Training Data Sets of the
PLS and PLS-DA Models

no. of
compounds pKi range

no. of
components

q2

(LOO) r2

2D-PLS model
alpha1A 517 4.0-10.4 6 0.748 0.826
5HT2A 509 4.0-10.2 5 0.656 0.740
D2 420 3.8-9.2 5 0.543 0.685
M1 544 3.3-10.8 6 0.675 0.771

2D-PLS-DA model
alpha1A 1468 0/1a 6 0.910 0.925
5HT2A 1378 0/1a 6 0.906 0.926
D2 1287 0/1a 6 0.898 0.913
M1 1410 0/1a 6 0.840 0.864

a Instead of pKi values, a class membership variable (Y) was
assigned to each active (Y ) 1) and inactive (Y ) 0) compound for
the generation of the PLS-DA model.

Table 5. Enrichment Factors and Hit Rates of Active
Compounds Obtained by the PLS and PLS-DA Modelsa

alpha1A 5HT2A D2 M1

% database
screened EF

hit
rate
[%] EF

hit
rate
[%] EF

hit
rate
[%] EF

hit
rate
[%]

2D-PLS model
1 2.0 10 0.0 0 0.0 0 12.0 60
5 1.2 6 0.0 0 0.0 0 5.6 28

10 1.2 6 0.0 0 0.2 1 4.0 20

2D-PLS-DA model
1 16.0 80 14.0 70 14.0 70 6.0 30
5 11.2 56 12.8 64 10.8 54 6.4 32

10 7.6 38 8.0 40 7.2 36 4.2 21
a Enrichments and hit rates are given at 1, 5, and 10% of the

ranked virtual libraries.
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tion” of a GPCR homology model and how the perfor-
mance would compared to those using X-ray structures

and “proper” homology models based on many template
structures. Referring to the results obtained by McGov-

Figure 13. Enrichment curves obtained by PLS models. For each receptor, two curves are shown, representing the enrichment
obtained by screening with either the PLS model or the PLS-DA model.

Figure 14. The PLS COEFF × STDEV plot highlights the CATS, MACCS, and QikProp descriptors, which are positively or
negatively correlated with alpha1A activity. Representative CATS and MACCS descriptors that contribute to the high-affinity
binding of the depicted alpha1A antagonist are mapped onto the molecule. Also, the name of the descriptor is provided. The
MACCS keys are given in Sybyl line notation (SLN).
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ern and Shoichet, we generally expect better enrich-
ments from docking into crystal structures of proteins.
On the other hand, we have previously shown that the
alpha1A homology model used here as a docking tem-
plate was reliable enough to identify 37 novel (out of
80 experimentally tested compounds) antagonists that
show a Ki value better than 10 µM at this receptor.39

These results show that in spite of the aforementioned
limitations, the docking approach into a GPCR model
may be well-suited for the discovery of novel GPCR
antagonists.

The performance of the ligand-based Feature Tree,
Catalyst 3D-pharmacophore, and PLS-DA models in
identifying known antagonists is remarkable. When
performing a virtual screening of a large compound
library, usually only the very top-ranked compounds will
be submitted for experimental testing in a biochemical
assay. When only the top 1% of the ranked hit lists is
considered, the presented ligand-based virtual screening
strategies (except for the 3D-similarity search) achieved
excellent hit rates of active compounds. Furthermore,
experience from internal projects (data not shown)
indicates that ligand-based virtual screening procedures
frequently outperform virtual screening based on dock-
ing if sufficient ligand information for the generation
of relevant models is available. Indeed, the performance
of ligand-based virtual screening procedures depends
critically on the amount and quality of ligand informa-
tion, which is used for the generation of these models.
This is particularly true for the generation of the
presented PLS-DA models. We assume that the good
performance of these models is due to the fact that the
active compounds of the screening sets are well-
represented by chemical neighbors in the training data
sets, which were used for the generation of the QSAR
models. Accordingly, the good performance of the Fea-
ture Tree and Catalyst pharmacophore models must be
attributed to the fact that a wide range of structurally
diverse active compounds for each target is available.
This enabled us to select representative compounds for
the generation of relevant “cross-chemotype” models.
Because of the identification of relevant functional
chemical groups and their abstraction into generic
pharmacophores, screening methods based on such
models are generally well-suited for “scaffold-hopping”.
Generally, we expect that the hit rates of ligand-based
virtual screening approaches will be less significant if
only a small amount of ligand information is available.
This expectation is confirmed by the weak performance
of the 3D-similarity searches, which were only based
on one reference structure.

When the qualitative aspects of the generated models
are considered, that is, when the possibility for inter-
pretation is considered, the homology models are most
illustrative to understand how ligands of different
chemotypes potentially bind to the receptors. Validated
by mutational and ligand structure-activity relation-
ship (SAR) data, the modeled complexes provided a
conclusive view on the molecular recognition process in
the antagonist binding pockets. Whereas ligand-based
models can only reveal binding features, which are
already captured by ligands, the inclusion of comple-
mentary information from the receptor site allows for
a comprehensive understanding of the molecular rec-

ognition process. Furthermore, molecular docking might
be able to uncover ligands with a novel scaffold reveal-
ing a “new” binding mode, for example, by addressing
additional interaction sites in the protein that have not
yet been used by known ligands. In addition, protein
models can be used as a structural basis for the
generation of relevant binding poses and ligand align-
ments, which would be useful for the subsequent
generation of 3D-QSAR models. Indeed, we were able
to generate significant 3D-QSAR models from the dock-
ing modes of different chemical series of antagonists of
the biogenic amine receptors presented in this study.
Such models allow for a reliable affinity prediction
within these chemical series. The structural superim-
position of the receptors and the corresponding align-
ment of the ligands used for the generation of 3D-QSAR
models thus allows for a straightforward parallel opti-
mization of affinity and/or selectivity.

Virtual screening based on GPCR homology models
may be particularly important in cases when either
limited or no ligand information is available. This is true
for most of the pharmaceutically relevant GPCRs, for
which only the endogenous ligand is known. Once the
generation of reliable GPCR structure models of the
activated receptor state becomes possible,77 molecular
docking might even provide an opportunity for the
identification of novel agonists. Thus, homology model-
ing and ligand docking might even be helpful for the
deorphanization of GPCRs. As a concluding remark, we
would like to point out that there is not one optimal
virtual screening strategy for GPCRs. In our experience,
the chance of being successful in virtual screening
increases if different virtual screening approaches are
employed in parallel or in combination with each other.

Experimental Section
Data Sets. Screening Set. For evaluating the performance

of different virtual screening protocols, we compiled databases
of active and inactive compounds from the MDDR database
(MDL Information Systems Inc.). MDDR is an annotated
database covering patent literature, journals, meetings, and
congresses, which contains over 141 000 biologically relevant
compounds and well-defined derivatives, such as drugs launched
or those in the developmental phase. For the generation of the
active sets, we first extracted all compounds registered as
active for the considered targets, which resulted in 525
alpha1A antagonists, 656 5HT2A antagonists, 489 D2 antago-
nists, and 140 M1 antagonists. To ensure maximal diversity
within each data set (and to avoid the inclusion of compounds
coming from the same chemical series as much as possible),
we extracted 50 of the most diverse compounds from each set
using UNITY fingerprints (Tripos Inc., 1699 South Hanley Rd,
St. Louis, MO, 63144.). Conversion of these molecules into
frameworks, that is, 2D molecular structures without regard
to atom type, hybridization, and bond order,78 resulted in 48
different frameworks for the alpha1A, 47 different frameworks
for the 5HT2A and D2 receptors, and 42 different frameworks
for the M1 receptor, confirming the structural diversity within
the active sets.

For the compilation of the inactive data set, we first
randomly extracted 10 000 compounds from the MDDR and
removed compounds listed as ligands of biogenic amine-
binding GPCRs. From the remaining list of compounds, a
diverse subset (based on UNITY fingerprints) of 1100 com-
pounds was extracted. To avoid including compounds with
biogenic amine receptor side-affinity in the inactive set, we
removed 150 compounds showing structural motifs that are
known to be linked to biogenic amine binding, thus, providing
a database of 950 inactive compounds. Of course, this proce-
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dure does not fully guarantee no side-affinity against any of
the receptors considered in this study. Nevertheless, because
all virtual screening strategies are evaluated against the same
inactive set, we believe it is sufficiently suited for a compara-
tive evaluation of the different screening methodologies.

Training Sets for the Generation of Catalyst Phar-
macophore and Feature Tree Models. The molecules
selected for the generation of Catalyst pharmacophore and
Feature Tree models were extracted from the Aureus database
(www.aureus-pharma.com) as described in ref 71. Aureus is a
structure-activity database for GPCR ligands maintained by
Aureus Pharma, which provides chemical structural informa-
tion and detailed experimental conditions (e.g., assay type, cell
line, or radioligand used). For each of the four GPCR targets,
we only considered biological data from radioligand displace-
ment assays, taking only high-affinity ligands into account.
The challenge in the generation of models is the requirement
that these models need to capture the essential interaction
points for several sets of compound classes, not just for a single
series. On the other hand, they should comprise sufficient
interaction points to describe the important molecular char-
acteristics that are specific for the respective receptor. Struc-
tural analysis of the selected compounds revealed that the
ligand sets can be grouped into two classes for each of the four
targets. Accordingly, for each target, two diverse training sets
covering chemotype examples of each class (termed class1 and
class2) were selected (see Figures 2-5). These ligands do not
overlap with the ligands of the screening set.

Training Sets for 2D-PLS Models. (1) Active sets for the
PLS models: for the generation of the PLS projection onto
latent structures models, all ligands with reported Ki values
(determined in a radioligand replacement assay) against the
wildtype of the target receptors were extracted from the
Aureus database. The resulting data sets comprised the
following: 517 antagonists of the alpha1A receptor, with pKi

values ranging from 4.0 to 10.4; 509 antagonists of the 5HT2A
receptor, with pKi values ranging from 4.0 to 10.2; 420
antagonists of the D2 receptor, with pKi values ranging from
3.8 to 9.2; and 544 M1 antagonists, with pKi values ranging
from 3.3 to 10.8.

(2) Active sets and decoy set for the PLS-DA models: a PLS-
DA model was generated to predict the class membership
(active or inactive at the actual target protein) of a compound.
For each target receptor, we extracted all compounds with a
pKi value higher than 6, which resulted in 468 active com-
pounds for the alpha1A receptor, 378 active compounds for
the 5HT2A receptor, 287 active compounds for the D2 receptor,
and 410 active compounds for the M1 receptor. Because we
were interested in differentiating between active and inactive
compounds (at the respective target receptors), the compilation
of an additional data set of inactive compounds was necessary.
This data set should provide a representative picture of
inactive compounds covering a diverse chemical space of a
typical screening collection. For this purpose, we compiled a
“decoy data set” consisting of structurally diverse compounds
from the MDDR that do not reveal affinity at the target
receptors. Using a procedure similar to that used for the
compilation of the screening sets, we randomly extracted
10 000 compounds, which (1) were not part of the above-
described inactive data set and (2) were not explicitly stated
as ligands of any other biogenic amine-binding GPCR. Again,
a diverse subset (based on UNITY fingerprints) of 1100
compounds was extracted. After the compounds were removed,
a process that might reveal side-affinity at the investigated
receptors after visual inspection, 1000 were selected as the
“decoy set” [internal evaluation studies (data not shown)
indicated that larger decoy sets do not improve the prediction
of the class membership of external test sets].

Quantitative Description of Hit Lists. The effectiveness
of the screening methods was evaluated by assessing the hit
rate and the enrichment of known active compounds within
the top-scored compounds compared to that of those randomly
selected.

The hit rate is given by the following equation:

The enrichments are reported in graphical and tabular form.
The enrichment factor is represented by

in which EF is the enrichment factor, Hitssampled is the
number of true hits in the hit list, Nsampled is the number of
compounds in the hit list, Hitstotal is the number of hits in the
full database, and Ntotal is the number of compounds in the
full database.

The hit rate and enrichment factor was calculated on the
basis of the assumption that all compounds with MDDR-stated
activity are active (true active compounds), and compounds
with no stated activity against this target are inactive.
Although compounds with potential affinity against the in-
vestigated receptors were eliminated from the inactive sets
after visual inspection, it cannot be excluded that some of the
inactive compounds identified among the top-scored com-
pounds by virtual screening revealed actual activity on that
target. The hit rate and enrichment factor would thus be
higher.

Homology Models/Docking and Scoring. Homology
Modeling. A detailed description of homology model genera-
tion and validation for the alpha1A receptor is given in ref
39. We applied a modified version of the MOBILE approach
(modelling binding sites including ligand information explic-
itly), which models proteins by homology while explicitly
including information about bound ligands as restraints and
thus provides more relevant geometries of protein binding
sites.79 We furthermore considered the mutational and ligand-
binding data reported in the literature69,70 to obtain only
models that were in agreement with these experimental data.
Because the sequential and (probably) structural similarity
among the members of the biogenic amine-binding GPCR
family is high, our alpha1A receptor homology model served
as a structural template for the homology modeling of the
remaining three receptors covered in this study. Again, we
explicitly considered ligands binding with high affinity to the
respective receptors as additional restraints in the protein
modeling procedure. Figure 1 shows the resulting protein-
ligand complexes generated by the ligand-supported homology
modeling. They served as the structural basis for the following
docking experiments.

Docking and Scoring. Docking was performed using
GOLD44-46 version 2.1 (applying “screening settings”) and
FlexX-Pharm47,48 version 1.12.2. For each ligand, 10 poses were
saved. It was our experience and that of others47,80,81 that better
hit rates were obtained when knowledge about ligand binding
was included as a restraint in the docking procedure. As
mentioned before, an interaction known to be essential for
biogenic amine-binding GPCRs is the (charge-mediated) hy-
drogen bond between Asp3.32 and a hydrogen linked to a
positively ionizable nitrogen. In GOLD, this interaction was
restrained by imposing a “protein H-bond” constraint (with a
weighting factor of 10) for the respective carboxy oxygen of
Asp3.32. Furthermore, the ligands that served as constraints
for the protein modeling procedure were used as “template
similarity constraints” for the virtual screening in their
orientations, as depicted in Figure 1 (also applying a weighting
factor of 10). A hydrogen bond with the carboxy oxygen of
Asp3.32 was also constrained as being essential for docking
with FlexX-Pharm. Furthermore, the positions of the positively
ionizable nitrogens were extracted from the ligands depicted
in Figure 1 and defined as spatial constraints in FlexX-Pharm.
Prior to docking, the ligand structures were processed using
the LigPrep utility from Schrodinger (Schrodinger, L. L. C.,
New York).

HitRate ) (Hitssampled

Nsampled
)100

EF )
Hitssampled/Nsampled

Hitstotal/Ntotal
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All docking poses generated by GOLD and FlexX-Pharm
were rescored using seven different scoring functions (D_Score,82

G_Score,44 ChemScore,83 PMF,84 and F_Score,48 as imple-
mented in the Cscore module of Sybyl7.0, DrugScore,85 and
Xscore43). Furthermore, the scoring functions implemented as
objective functions in the docking algorithms (GoldScore for
GOLD, FlexX-Score for FlexX) were considered.

3D-Pharmacophore and Feature Tree Models. Fea-
ture Tree Models. The Feature Tree represents a molecular
graph that is generated by the decomposition of an underlying
molecule into fragments6 (see also Figure 6a,b). Each fragment
represents a feature node, labeled with physicochemical
properties. Several molecules can be combined into a consistent
topological molecular alignment, resulting in an MTree model,
which can be used for the virtual screening of large compound
collections.49 Such a model is conceptually similar to a 2D
pharmacophore and highlights those chemical substructures
that exhibit consistent protein-ligand interactions and that
might be important for molecular recognition at the target
protein. For easy interpretation, a graphical representation
based on hexagonal grids is provided in which each node is
related to topological fragments and functional groups in the
input series of molecules (see Figure 6a). The matching of a
candidate molecule (which is itself represented as Feature
Tree) can be visualized by indicating the agreement of corre-
sponding functional groups (Figure 6d). A similarity measure
quantifies the matching of a candidate molecule with the
MTree model. Database searches based on such models have
been demonstrated to be efficient in virtual screening. These
models are able to discover alternative molecular scaffolds not
included in any of the molecules used for model generation.49

For all molecules of the training and the screening sets,
Feature Tree descriptors were calculated. For each target, the
ligand sets for model generation (see Figures 2-5) were
automatically converted into MTree models using the dynamic
match search algorithm implemented into the Feature Tree
program. In the virtual screening, all candidate ligands of the
active and inactive sets were ranked according to their
similarity to the MTree model used for the screening.

3D-Pharmacophore Models. A 3D-pharmacophore model
(in Catalyst called a hypothesis) consists of a collection of
features potentially important for the biological activity of the
ligands arranged in a 3D space, such as hydrogen-bond
acceptors, hydrogen-bond donors, and the hydrophobic features
of a Catalyst pharmacophore model. Features are associated
with position constraints that consist of the ideal location of a
particular feature in a 3D space surrounded by a spherical
tolerance.

The common-feature hypothesis generation (HipHop) mod-
ule of Catalyst has been used for the generation of the 3D
pharmacophores for the alpha1A, 5HT2A, D2, and M1 recep-
tors.71 As mentioned above, for each target, two pharmaco-
phore models (class1 and class2) have been generated based
on the ligands depicted in Figures 2-5. For each dataset, one
molecule (a representative of the class with good affinity and
with a small number of conformers) was chosen as the
“principal” molecule, as indicated in Figures 2-5. The follow-
ing features included in the Catalyst’s features dictionary were
considered for the generation of the common-feature hypo-
thesis: positively ionizable (PI), hydrophobic (HY), hydropho-
bic aromatic (HYA), ring aromatic (RA), hydrogen-bond donor
(HBD), and hydrogen-bond acceptor (HBA). To improve the
quality of the 3D pharmacophores, a shape query was gener-
ated for each principal molecule and merged with the respec-
tive 3D pharmacophore.

For all ligands of the screening set, conformational sets were
generated using the poling algorithm and the “best-quality
conformational analysis” method, based on the CHARMm force
field (Catalyst catConf module). In the virtual screening, the
agreement of a candidate ligand with a pharmacophore was
evaluated by mapping corresponding pharmacophoric features
of the ligand onto the pharmacophore and calculating a fit
value, which was subsequently used for the ranking of the
screened library (Catalyst citest module).

2D-QSAR Models. PLS Models. For each receptor target,
the molecular descriptors for all of the compounds of the
training sets for the 2D-PLS models were combined with the
corresponding pKi values and used as input to create models
using PLS as implemented in Sybyl7.0. To check the statistical
significance of the PLS models, cross-validation runs were
performed via the “leave-one-out” (LOO) procedure. Using the
PLS models, we subsequently performed a virtual screening
of the screening set by predicting the pKi values of all of the
candidate ligands of the active and inactive sets. Finally, the
compounds were ranked according to their predicted pKi

values.
PLS-DA Models. Whereas the PLS models are trained with

active compounds spanning a sufficiently large range of pKi

values, binary models are generated to predict the class
membership of an external set of objects. As described above,
all ligands extracted from the Aureus database exhibiting a
pKi value > 6 were considered to be active at the respective
target receptors, whereas the compounds from the decoy set
represented inactive compounds. A class membership variable
(Y) was assigned to each active (Y ) 1) and inactive (Y ) 0)
compound. Again, the PLS implementation in Sybyl7.0 was
used for the generation and cross-validation of the models. For
virtual screening, we predicted the class membership variable
for all of the candidate ligands of the active and inactive sets
and ranked the compounds according to the predicted values.
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